Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hai-Bo Wang,* Jia-Hui Chen and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.073 wR factor = 0.259 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 3-dimethylamino-2-{2-[2-(dimethylamino)-1-(3-phenyl-1,2,4-oxadiazol-5-yl)vinyloxy]phenyl}acrylate

The title compound, $C_{24}H_{26}N_4O_4$, was synthesized by the reaction of methyl {2-[(3-phenyl-1,2,4-oxadiazol-5-yl)-methoxy]phenyl}acetate and *N,N*-dimethylformamide dimethyl acetal and crystallizes in the triclinic space group $P\overline{1}$ with two independent molecules in the asymmetric unit. The crystal packing is stabilized mainly by van der Waals interactions.

Comment

1,2,4–Oxadiazoles represent an important class of fivemembered heterocycles. Some derivatives of 1,2,4-oxadiazoles have intrinsic analgesic (Terashita *et al.*, 2002), antiinflammatory (Nicolaides *et al.*, 1998) and antipicornaviral (Romero, 2001) properties and are efficient as agonists (*e.g.* for angiotensin (Naka & Kubo, 1999) and adhesion (Juraszyk *et al.*, 1997) for different receptors.

We report here the crystal structure of the title compound, (I), synthesized from methyl {2-[(3-phenyl-1,2,4-oxadiazol-5-yl)methoxy]phenyl}acetate (Wang *et al.*, 2004) and *N*,*N*-dimethylformamide dimethyl acetal. The molecular structure of (I) is shown in Fig. 1 and bond lengths and angles are detailed in Table 1. The crystal packing is stabilized mainly by van der Waals interactions, though there are short intra- and intermolecular C-H···O contacts (Fig. 2 and Table 2).

Experimental

Methyl {2-[(3-phenyl-1,2,4-oxadiazol-5-yl)methoxy]phenyl}acetate (14 mmol) was dissolved in dimethylformamide (20 ml) and *N*,*N*-dimethylformamide dimethyl acetal (8 ml) was added in one portion. The resulting mixture was refluxed for 6 h, then concentrated under reduced pressure to afford crude compound (I). Pure compound (I) was obtained by crystallizing from ethyl acetate (15 ml) and petro-leum ether (b.p. 445–447 K) (7.5 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Spectroscopic analysis, ¹H NMR (CDCl₃, p.p.m.): 7.99–8.00 (m, 2H), 7.83 (m, 1H), 7.43–7.55 (m, 3H), 7.35 (m, 1H), 7.17–7.21 (m, 2H), 6.95–6.97 (m, 1H), 6.90–6.91 (m, 1H), 3.57 (s, 3H), 3.02 (s, 6H), 2.86 (s, 6H).

 ${\ensuremath{\mathbb C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 11 August 2004

Accepted 2 September 2004

Online 11 September 2004

A view of the asymmetric unit of (I). Displacement ellipsoids are drawn at the 25% probability level.

Short $C-H \cdot \cdot \cdot O$ contacts (dashed lines) in the crystal structure of (I).

Crystal data

$C_{24}H_{26}N_4O_4$	Z = 4
$M_r = 434.49$	$D_x = 1.254 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 11.220(2) Å	Cell parameters from 25
b = 12.260(3) Å	reflections
c = 17.762 (4) Å	$\theta = 10 - 13^{\circ}$
$\alpha = 71.06 \ (3)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 86.35 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 85.19 \ (3)^{\circ}$	Block, colourless
$V = 2301.1 (8) \text{ Å}^3$	$0.50 \times 0.30 \times 0.20 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.961, \ T_{\max} = 0.974$ 9501 measured reflections 9014 independent reflections 4761 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2
$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.073 \\ wR(F^2) &= 0.259 \end{split}$$
S = 1.129014 reflections 578 parameters H-atom parameters constrained

Table 1 Selected geometric parameters (Å, °).

 $R_{\rm int} = 0.039$ $\theta_{\text{max}} = 26.0^{\circ}$ $h = 0 \rightarrow 13$ $k=-14\rightarrow 14$ $l = -21 \rightarrow 21$ 3 standard reflections every 200 reflections intensity decay: none

 $w = 1/[\sigma^2({F_o}^2) + (0.1P)^2$ + 1.9P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.019$ $\Delta \rho_{\text{max}} = 0.32 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.25 \text{ e } \text{\AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.0092 (15)

O1-C8	1.371 (5)	N4-C23	1.453 (6)
O1-N1	1.424 (5)	N5-C37	1.304 (5)
O2-C9	1.378 (5)	N6-C38	1.303 (5)
O2-C10	1.397 (5)	N6-C37	1.365 (5)
O3-C17	1.220 (5)	N7-C49	1.338 (6)
O4-C17	1.351 (5)	N7-C51	1.437 (6)
O4-C18	1.433 (6)	N7-C50	1.441 (6)
O5-C38	1.354 (5)	N8-C52	1.337 (5)
O5-N5	1.422 (5)	N8-C53	1.448 (6)
O6-C40	1.386 (5)	N8-C54	1.462 (6)
O6-C39	1.389 (5)	C8-C9	1.414 (6)
O7-C47	1.215 (5)	C9-C22	1.371 (6)
08 - C47	1 351 (5)	$C_{15} - C_{16}$	1 482 (6)
08 - C48	1 443 (6)	C16 - C19	1 351 (6)
N1 - C7	1 295 (6)	$C_{16}^{-} - C_{17}^{-}$	1 472 (6)
$N_2 = C_8$	1.293(0) 1.303(5)	$C_{33} - C_{37}$	1.172(0) 1 470(6)
N2 C7	1.303(5) 1.367(5)	C_{38}^{39} C_{39}^{39}	1,470 (0)
$N_2 = C_1^{-1}$	1.307 (5)	C30 C52	1.457 (0)
N3-C19	1.326(0) 1.445(7)	C39-C32	1.345 (0)
N3-C20	1.443(7)	C41-C40	1.499 (0)
N3-C20	1.402 (7)	C46-C49	1.333 (6)
N4-C22	1.330 (0)	C40-C4/	1.454 (6)
N4-C24	1.432 (6)		
C8-O1-N1	105.9 (3)	C22-C9-C8	119.4 (4)
C9-O2-C10	118.4 (3)	C15-C10-O2	115.1 (3)
C17 - O4 - C18	115.7 (4)	C10-C15-C16	120.5 (4)
C38-O5-N5	106.1 (3)	C19-C16-C17	114.1 (4)
C40-O6-C39	117.6 (3)	C19-C16-C15	126.9 (4)
C47-O8-C48	116.3 (4)	O3-C17-O4	121.3 (4)
C7-N1-O1	103.2 (4)	O3-C17-C16	125.7 (4)
C8-N2-C7	103.3 (4)	N3-C19-C16	130.9 (4)
C19-N3-C21	124.1 (4)	N4-C22-C9	130.8 (4)
C19-N3-C20	120.3 (5)	C34-C33-C37	120.8 (4)
C21-N3-C20	115.6 (5)	C32-C33-C37	120.4 (4)
C22-N4-C24	124.6 (4)	N5-C37-N6	115.6 (4)
C22-N4-C23	119.5 (4)	N5-C37-C33	121.0 (4)
C24-N4-C23	115.9 (4)	N6-C38-O5	112.8 (4)
C37-N5-O5	102.8 (3)	N6 - C38 - C39	130.1 (4)
$C_{38} = N_{6} = C_{37}$	102.8(4)	C52 - C39 - C38	1198(4)
C49 - N7 - C51	1240(4)	06 - C39 - C38	115.6 (4)
C49 - N7 - C50	1200(4)	$C_{45} = C_{40} = O_{6}$	122.9(4)
$C_{51} N_7 C_{50}$	120.0(4) 1160(5)	06 C40 C41	122.9(4) 116.0(3)
$C_{52} N_8 C_{53}$	110.0(3) 125.3(4)	C_{42} C_{41} C_{46}	124.0(3)
$C_{52} = N_8 = C_{53}$	125.5(4)	$C_{42} = C_{41} = C_{40}$	124.0(4)
C52 N8 C54	115.3(4) 115.2(4)	$C_{40} = C_{41} = C_{40}$	110.0(4) 114.8(4)
$C_{1} = 100 - C_{24}$	113.2(4) 120.6(4)	$C_{40} = C_{40} = C_{47}$	114.0(4) 125.5(4)
$U_1 = U_2 = U_1$ N1 C7 N2	120.0(4)	07 C47 00	123.3(4)
N1 - C/ - N2	113./(4)	0/-04/-08	120.7(4)
N1 - C/ - C3	121.0 (4)	08 - 04 / - 046	112.5 (4)
N2 - C8 - O1	112.0 (4)	N = C49 = C46	132.3 (4)
IN2-U8-U9	131.6 (4)	C39-C52-N8	130.2 (4)
C22 - C9 - O2	123.2 (4)		

Table 2		
Short C $-H$ ···O contacts ((Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C19-H19A····O3	0.93	2.33	2.747 (6)	107
$C23-H23A\cdots O7^{i}$	0.96	2.51	3.280 (6)	137
$C24 - H24A \cdots O2$	0.96	2.14	2.918 (7)	137
C49−H49A···O7	0.93	2.34	2.763 (6)	107
C53−H53A···O6	0.96	2.16	2.929 (6)	136

Symmetry code: (i) 1 - x, -y, 1 - z.

All H atoms were positioned geometrically (C-H = 0.93–0.96 Å) and refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4* Software; data reduction: *XCAD4* (Harms, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997);

molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL*97.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. (1995). XCAD4. University of Marburg, Germany.
- Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. & Melzer, G. (1997). PCT Int. Appl. No. 9 744 333.
- Naka, T. & Kubo, K. (1999). Curr. Pharm. Des. 5, 453-472.
- Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Romero, J. R. (2001). Expert Opin. Invest. Drugs, 10, 369-379.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Terashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. WO 02,604,39. Wang, H.-B., Chen, J.-H. & Wang, J.-T. (2004). Acta Cryst. E60, 01478–01480.